NBL electives include many existing courses within our Ph.D. programs. We have also begun developing several electives specifically integrated with the NBL program. Here is a partial list:
- Techniques for brain and language (neuroimaging), E. Mencl, Director of Neuroimaging, Haskins. Introduction to magnetic resonance imaging (MRI) with emphasis on language, covering the physics of MRI, and hands-on fMRI design, acquisition and analysis. Advantages and disadvantages of MRI, EEG/ERPs, and MEG will be discussed. Students will leave the course with an enhanced ability to interpret neuroimaging findings in the context of linguistic and cognitive theory.
- Introduction to computational neuroscience, H. Read, BNS. Explores domain-specific and -general aspects of organization in sensory and motor cortices from a computational perspective.
- Sensory Neuroscience Laboratory. H. Read, BNS. Techniques employed in the experimental investigation of sensory neuroscience, hearing and sound discrimination of human and animals. Computer programming (Matlab) is used to synthesize and process sounds and analyze human psychophysics; human and animal auditory evoked brainstem potentials data. Read will retool this class to make it accessible to non-BNS students and integrate it with NBL themes.
- Time course methods, J. Magnuson, PAC. Magnuson will retool this hands-on seminar in eye tracking and EEG/ERP developed for his current NSF CAREER award to be accessible to students from all Ph.D. programs. This course has a history of preparing students through hands-on training in service of team-based, real research projects (100% of student projects have led to national conference presentations and/or publications).